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ABSTRACT- Conventional methods used to measure the cold-test interaction impedance of

helical slow-wave structures involve perturbing a helical circuit with a cylindrical dielectric rod

placed on the central axis of the circuit. It has been shown that the difference in resonant

frequency or axial phase shift between the perturbed and unperturbed circuits can be related to

the interaction impedance. However, because of the complex configuration of the helical circuit,

deriving this relationship involves.several approximations. With the advent of accurate three-

dimensional helical circuit models [1, 2, and 3], these standard approximations can be fully

investigated. This paper addresses the most prominent approximations made in the analysis for

measured interaction impedance by Lagerstrom [4] and investigates their accuracy using the

three-dimensional simulation code MAFIA. It is shown that a more accurate value of interaction

impedance can be obtained by using three-dimensional computational methods rather than

performing costly and time consuming experimental cold-test measurements.

I. INTRODUCTION

Obtaining slow-wave circuit interaction impedance is an important part of the design

process for a traveling-wave tube (TWT) as this parameter is related to the gain and efficiency of
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the tube or the minimum length of a backward-wave oscillator. On-axis interaction impedance is

proportional to the strength of coupling between the RF waxe and the electron beam, defined for

the n _ RF space harmonic [5] as

where E=(0) is the on-axis longitudinal electric field magnitude of the n thaxial space harmonic, P

is the time averaged RF power flow and 13. is the axial phase constant of the n _hspace harmonic

defined by

fin = fl +--ff- 2

where 13is the fundamental axial phase constant and L is the pitch length.

Synchronism with the beam for the electromagnetic wave propagating on the helix is

desirable for the fundamental RF space harmonic; thus, we need to calculate the fundamental (n

= 0) harmonic term in equation 1 to determine the on-axis interaction impedance which is related

to the gain of the circuit and is used as an input in various TWT modeling codes such as [6]. To

determine the interaction impedance of the backward wave mode which is related to backward

gain (backward wave oscillations) we need to calculate the impedance associated with the n = -1

space harmonic is required.

Typically, interaction impedance is obtained by perfi_rming cold-tests on the helical

circuit or a scale model of the circuit. This experimental procedure is time-consuming and

expensive, but until recently it was thought to be the most accurate means of determining

interaction impedance. Most often, measurements on helical circuits are performed by using
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nonresonantperturbationtechniqueswheretheaxialphaseshift is measuredat a certain

excitationfrequencyfor aperturbedandanunperturbedcircuit. After somelengthyalgebraic

manipulation,Lagerstromshowsthat this differenceinphaseshift, A[5, is proportional to the

perturbed and unperturbed electric fields integrated over the perturbing rod volume divided by

the power within the structure (equation 3.18 of [4])

rE' .E* dv(06o(6'--1)

aV 3
4pL

E* denotes the complex conjugate of the original electric field and E' denotes the perturbed field.

If representations of the unperturbed and perturbed fields are known, equation 3 can be solved

providing an expression relating this measurable quantity to the interaction impedance.

However, because of the complexity of the helical structure, several approximations become

necessary in representing E* and E'. It is well known that these assumptions will cause some

error in the measurement, and several researchers have addressed this issue in an attempt to

improve upon Lagerstrom's work [7], [8]. Nevertheless, several approximations are still

involved making direct calculation of equation 1 with a three-dimensional computer code [1, 2,

and 3] the most accurate method.

An accurate, three-dimensional, computational helical cold-test model has been

developed and reported on in [1]. This model allows, for the first time, a complete investigation

of the conventional approximations which go into helical circuit analysis. A summary will be

given of Lagerstrom's analysis emphasizing the major assumptions made, followed by the results

from an investigation of each of these assumptions using MAFIA. MAFIA (Solution of

MAxwelrs equations by the Finite-lntegration-Algorithm) is a powerful, electrodynamic code



thatis usedfor computer-aideddesignof two-dimensional and fully three-dimensional

electromagnetic devices [9, 10].

In addition to the approximations that go into the experimental impedance calculations,

there are several human factors which can cause inaccurate measurements. For example, the

perturbing rod may be displaced from the central axis of the circuit slightly, or the dielectric

constant of the perturbing rod may be uncertain. Also, reflections may be present because of

mismatches at the input/output couplers, nonuniformity in the helical pitch, or because of other

manufacturing errors.

The circuit used as a model for this study is the helix slow-wave circuit from a 40 Watt,

18-40 GHz TWT for the millimeter-wave power module (MMPM) [11]. The experimental

circuit includes a rectangular, tungsten, helical tape supported by T-shaped BeO rods inside a

conducting barrel as shown for the end view in Figure 1. The specific results presented here

apply only to the mentioned circuit; however, these results can serve as a general guide for

similar devices, and the computational techniques are readily applicable to other TWT's.



T-shaped BeO

Rectangular _-------...y_upport rod

tape h "

Figure 1 Hughes MMPM helical slow-wave circuit

lI. THEORY OF INTERACTION IMPEDANCE MEASUREMENTS [4]

Lagerstrom uses the perturbation method to distort original fields in the circuit in order

to gain knowledge about the strength of the fields in the region of interaction. Reviewing the

perturbation formula of equation 3, we recognize that it is necessary to derive expressions for

unperturbed and perturbed electric fields within the perturbation rod volume. If these

expressions can be derived in terms of the magnitude of the n 'haxial space harmonic of the on-

axis longitudinal electric field, E_(0), the interaction impedance can be expressed in terms of the

measurable quantity A[3. Thus, as a basis for the helical field configuration we start by

considering a circular aperture with radius a which identically repeats itself every distance L in

the axial direction. The space harmonic nature of the field solutions is such that any field

quantity can be written as
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where the time variation d °t is understood and an is the n_ Fourier amplitude coefficient which is

a function of r and 0 only. Inside a homogeneous region of a circular aperture in free space, the

space harmonic components are solutions of the homogeneous wave equation in cylindrical

coordinates. So, the longitudinal electric field can be expressed as

^ oo 27tn

Ez(r,O,z) = e-JarEz(r,O,z) = e-J_ E[avnlv(Znr) + bvnKv(Znr) }eJVOe-Y--ff -z

y,ir/=--oO

where Iv(y.r) and IQ(ynr ) are the modified Bessel functions of the first and second kind and Ynis

the radial propagation constant of the n th space harmonic deiined by

gn= _[f12- k 2 ' k 2 =602//o6o

where co is the radian frequency 2rrf, and I.to and eo are the free space permeability and

permittivity, respectively. When the axis is included in the circular aperture, I_(1,nr ) cannot

represent a physical field, forcing b,,, to equal zero. Thus, in the region 0 _<r ___a

A

Ez(r,O, z)

oo 2nn

= e-Y'az Ez(r'O'z) = e-Jar E Ezvnlv(?'n r)ejvOe-j-Z--z"

I,',/1=--00

CO

The phase velocity Vpn of the vn th space harmonic is given by Vpn =_--. The interaction

impedance for the vn thspace harmonic at a non-zero value o:i'radius can be defined as

Kvn(r) =
Ezvn(r) *Ezvn(r)

2fl 2 P
where P denotes the time-aveiaged real power flowing in the mode
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of which this V# h space harmonic is a part. Since there can be no azimuthal variation on the axis

of a circular aperture, the interaction impedance at r = 0 reduces to equation 1.

Although at any position all of the space harmonics are present and contributing to the

total field, the perturbing rod can be strategically placed in a region where the space harmonic of

interest is dominant. It is obvious that on the axis of a circular aperture, the 0-varying space

harmonics vanish (v = 0) and the n = 0 space harmonic will dominate. If a dielectric rod of

infinitesimal diameter were placed on the axis, only this space harmonic would be present in the

region of perturbation. Accordingly, only this space harmonic would be involved in the

perturbation integral of equation 3 making the problem straightforward. An infinitesimally thick

rod is, of course, not physically possible, and in practice the rod must be thick enough to produce

a measurable perturbation. Therefore, other space harmonics will be present over the rod volume

making the problem far more complicated. In [4], the perturbing rod is assumed to be small

enough in diameter that the space harmonics other than v=n=0 can be neglected over the entire

perturbation volume. Another assumption made is that the TM portion of the fields dominates

the TE portion. Therefore, electric fields can be expressed in terms of the axial and radial

components only, neglecting the azimuthal component.

The approach used in [4] to calculate the local fields for the perturbation integral

considers that the perturbation rod is placed in a region containing a "snap-shot" of the original

field configuration. Lagerstrom refers to this as the "incident" field. The "induced" or

"reflected" field, AE, is calculated as the additional field needed to satisfy the perturbing rod

boundary conditions. With these calculated, E' can be calculated for use in equation 3.

Lagerstrom justifies this procedure as follows: the propagation constant is changed only slightly
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by the addition of the dielectric rod, and since the media of the slow-wave circuit determines the

unperturbed propagation constant, the fields at the perturbat: on would be expected to change

only slightly as well.

Applying Lagerstrom's approximations that only the v=n=0 space harmonic will be

present and the TE portion of fields can be neglected within the perturbation volume, and the

perturbed and unperturbed fields are equal outside the perturbation rod, we proceed in solving

equation 3. To express the fields in the actual structure, [4] begins as if to solve the boundary

value problem of a perturbing rod of radius b in a sheath helix of average radius a and axial turn

length L. Since the particular configuration of the circuit is not involved, the local field solutions

at the rod and the evaluated integral should apply for an arbitrary structure with a dominant non-

azimuthally varying harmonic.

The TE and TM fields can be expressed separately in terms of the longitudinal fields, Ez

A

and Hz. Using the notationE = e -j_ E where E is now a function ofr only, Maxwell's

JP 8 .wG D

equations [12] are used to give

Jflo aru8

TE: U r -y2 Or nz' EO =-J-_---_ Hz

From equation 7, the unperturbed longitudinal electric field in the region inside the helix, 0 < r <

a, can be expressed as

Ez =AIo(r r)



Since I0(y r) = 1 on the axis, A is the magnitude of the axial electric field on the

axis, E z (0) = A. From equation 8, the transverse fields needed in the perturbation integral of

equation 3 associated with the TM portion of the fields can be derived:

P
E r = j_ AIl( r r).

7
10

Next, a cylindrical dielectric rod of radius b and dielectric constant e'eo is placed on the

helical axis, consequently creating a new boundary condition. Two regions now exist, I, the

region between the rod and the helical conductor and II, the region within the dielectric rod (See

Figure 2).

Region I )
_o, go,

!

\

Helical',c_uctor

Figure 2 Helical perturbation rod model

Using equations 5 and 8, the fields in the two regions can be expressed as

Region I (b <__r < a):



Ezl = AIIo( Y r) + BIKo(y r)

t

y2 = fl,2 _k 2 k 2 =: c02/2oO_o

11

Region II (0 _<r _<b):

Ez.ll = Alllo(Y r)
P

jfl, A (y')Erll = HI1 r
y 12

7,,2 = fl,2_k,2 , k,2 = c' k 2

For the perturbed case, the magnitude of the longitudinal fie ld on the axis is

At the rod surface, the normal D field and tangential E field must beEz.ll (0) = All = E' z (0).

continuous, so

Ez. / (b) = Eal (b)

Erl(b) = 6'Er11(b) "

As mentioned previously, the rod is assumed to be placed ir a snap-shot of the unperturbed

13

t

fields, so the incident fields are equal to the original fields, v y, and,fl _. fl', _ at the perturbation

rod surface. With these assumptions, Ezl can be extended to the axis and evaluated resulting in A

= A_ = Ez(0 ). The perturbed on-axis longitudinal field magnitude, E'z(0) = E._(0) = A w

Substituting equations 11 and 12 into 13 and eliminating By Lagerstrom derives the correction

factor p_ relating the perturbed and unperturbed on-axis longitudinal electric field magnitudes as
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Pl =-_

E'z(o) niI Io(r b)

Ez(O) AI Io(r'b) 1 +
U

14

where

U

(7'b) 2 Io( Y b) K0(7' b)
15

2 Ii( r b)

(r b) I0(r b)
16

and

t

2 Ii(r' b)

(g' b)Io0" b)
17

Substituting the electric field components and taking advantage of the assumption that

there is no azimuthal or axial variation, equation 3 can be expressed as

Ap=

b

2zcO_Go(g-1) Ir[E'zo(r)E*zo(O+ E'ro(OE*rO(O]dr

0

4P
18

The fields within the integral can be expressed in terms of the on-axis fields using equations 9,

10 and 12:

E ' 1E zO(r)E zo(r) + E ro(r)E ro(r) = E zO(O)E zO(O) Io(Y r)lo(Tr) + ---r Ii(g r)I 1(yr) .
Y7

19

Lagerstrom defines two additional correction factors:
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2 _rlo(y,r)io(?" r) dr = Io(),'b)Io(Yb) V' - 2 - V
P2=_- 0 ,_-lj

20

and

b '2 _r ' D" '
P3=_ " II(7" r)IlO" r) dr =-flz loO" b)Io(Y b) L E-1J "

o

21

To simplify the notation Pe is defined as

Pe -_- , ,o.< >im.vv]Pl(P2 +---7P3) = , 1- -v--;--
YT' _-1 1 1 cV-V

U 8V -V

22

and the integral of equation 18 becomes

b

• . ]rE' ,2 *2to zO(r)E zO(r) + E rO(r)E rO(r) dr = _r9 PeEzO(O)E z0(0).

0

23

Substituting equation 23 into equation 3, Lagerstrom arrives at

2 *

l '--1)Tt_ [PeSoEzo(O)E zo(O)]. 24

Consequently, the on-axis interaction impedance can be expressed in terms of the change in

propagation constant as

Xo = Ez°(O)EzO(O) = 1 240 fl 2

2fl 2 P Pe(e'-1) k _.,fl) fl (yb) 2" 25

It should be noted, as Wang and Carter [7] point out, that Lagerstrom omitted a term

when evaluating pe (equation 3.27 of [4]). They report in [7] that this omission results in an error
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which is larger than the measurement error at higher frequencies. Equation 22 gives the correct

formula.

The above analysis which applies to the nonresonant perturbation method can also be

applied to the resonant perturbation method where the resonant frequencies are measured in a

truncated section of circuit before and after perturbation. The change in frequency can be related

to the change in axial phase shift by equation 3.54 of [4]

1-- 26

f . Vp ,.

where 13, Vpand f are the unperturbed axial phase shift, fundamental phase velocity and

frequency, respectively, and vg is the group velocity of the perturbed structure.

Another common approximation made when the dielectric rod is small, is that the axial

electric field is uniform in the transverse direction and the transverse electric fields can be

neglected. Making these assumptions simplifies the problem to a great extent since the field

tangential to the perturbing rod must be continuous through the boundary; thus, the magnitude of

the perturbed field is equal to that of the unperturbed field everywhere [4]. In this case, equation

3 is easily solved and the interaction impedance is expressed as

KO = Ez(O) E:(O) 2 Aft 27
2,02 p - cop(6,_l)zoxb2 P

Lagerstrom refers to equation 26 as the first order perturbation expression. He has improved

upon this theory by deriving the correction factor Pe to account for the transverse fields, the

variation of the axial fields in the transverse direction and the difference between the perturbed
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andunperturbedfields. This first orderperturbationexpressionis still used,however,by various

researcherssoit is worthwhilecomparingtheseresultswith thecorrectedtheoryby Lagerstrom.

III. SIMULATED INTERACTION IMPEDANCE

The on-axis interaction impedance for the nthRF space harmonic as defined in equation 1 can

be calculated directly using a three-dimensional computer code such as MAFIA. This study uses

a method where one turn of the helical circuit is simulated. 1"he cold-test characteristics can be

obtained by applying the quasi-periodic boundary condition of MAFIA to the longitudinal ends.

This feature of the code permits the user to choose a fixed phase advance per tum in the axial

direction, allowing the frequency to be obtained at any axial phase shift. The interaction

impedance is then calculated at this phase shift directly from equation 1. E_(0) is obtained by

doing a Fourier analysis on the total on-axis axial electric field, ''f'
Ez (0):

L

l IEz(O) eJP,,Zdz. 28e (O) =7
o

The time averaged RF power flow P is defined by

P = WVg, 29

where vg is the group velocity and w is the time averaged stored electromagnetic energy per unit

length,

WT
W --

_._.NL '
3O

with WT the total energy and N the number of helical tums rnodeled. W T is calculated directly by
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MAFIA and the group velocity is calculated by taking the slope of the dispersion curve.

IV. RESULTS

Using the MMPM helical slow-wave circuit, simulations are compared with experimental

cold-test measurements below.

A. Dispersion

The dispersion was measured experimentally by using the resonant perturbation method.

An HP 8722D VNA was used to measure the resonant frequencies of the MMPM cold-test

structure consisting of 159 helical turns [11]. At the helical boundaries are sections of simple

cylindrical waveguide with diameter equal to that of the slow-wave circuit outer barrel and axial

length about 1.4 times the length of the longest wavelength of operation. The dispersion was

also calculated using MAFIA by simulating one helical turn and using quasi-periodic boundary

conditions. The measured results and those obtained using MAFIA are plotted in Figure 3. The

agreement is excellent with an absolute average difference across the bandwidth of less than

0.13%. The CPU time for each frequency point is about 2 hours using a IBM RISC/6000 Model

595 Workstation.
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Figure 3 Measured and simulated dispersion for MMPM helical slow-wave circuit

B. Interaction Impedance

A cylindrical sapphire rod was placed on the central axis of the MMPM experimental test

structure and the resonant frequencies measured again. The perturbation rod radius to average

helix radius ratio is 0.5. The precise positioning of the rod on the center of the structure was

accomplished by fitting the rod into axial end holes in the test fixture with diameter slightly

larger than the perturbing rod diameter. Using equations 25 _md 26, the on-axis interaction

impedance was calculated and is plotted in Figure 5 along with the results from calculations

using MAFIA and equation 1. The results calculated directly from equation 1 using MAFIA are

consistently lower than measured results with an average difference of 26.6%.

MAFIA was also used to duplicate the perturbation experiment by simulating the helical

circuit with a cylindrical dielectric rod of size and material l:roperties consistent with the

experimental setup. A cross-section of the MAFIA MMPM helical circuit modeled in the
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cylindrical coordinatesystemwith theperturbingrod is shownin Figure4. Computationally,the

appliedfrequencynecessaryto holdthephaseshift constantwhenaperturbingrod is insertedis

obtained.Usingthesimulatedchangein frequencyAf, the impedancewascalculatedin thesame

mannerastheexperimentalvaluesusingequations25and26. TheMAFIA perturbation

interactionimpedanceresultsarealsoplottedin Figure5. Theseresultsarecoincidentwith the

measuredvaluesemphasizingtheaccuracyof thecode. AlsoplottedaretheMAFIA

perturbationresultsusingthefirst orderperturbationexpressionof equation27. Thisdatashows

thelargediscrepancybetweenmeasuredresultswhenLagerstrom'scorrectionfactor is

incorporatedandwhenit is assumedthat theaxial electricfield isuniform in thetransverse

directionandthetransversefieldsareneglected.With theseassumptions,the interaction

impedanceisanaverageof 52%lower acrossthebandwidthcomparedto measureddatausing

Lagerstrorn'scorrectionfactorPc-

Figure 4 MAFIA cross-sectional view of MMPM helical slow-wave circuit with perturbing

rod
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Figure 5 On-axis interaction impedance obtained by measurement and using MAFIA with

the perturbation method (eqn. 25), direct calculation (eqn. 1), and the first order

perturbation expression (eqn. 27)

V. INVESTIGATION OF LAGERSTROIVI'S APPROXIMATIONS

Figure 5 shows that there is a definite discrepancy between measured impedance and

results which were obtained using MAFIA and directly calculating the impedance from equation

1. This plot, as well as Figure 3, verifies the accuracy of the simulated model by the outstanding

agreement in the measured and simulated dispersion and impedance using the perturbation

method. The purpose of this section is to investigate the major approximations made in

Lagerstrom's analysis and determine their accuracy. To per:_brm a meaningful comparison of

electric fields for various simulations, it is necessary to com:_are E2/w as each simulation is

normalized to an arbitrary excitation voltage. For all of the ;simulations reported on in this
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report, the energy value stays constant making it valid to compare only the electric fields. It

should be mentioned that using quasi-periodic boundaries with MAFIA simulates traveling

waves. Therefore, the fields have amplitude and phase. In the following field comparisons, only

the amplitudes are shown.

The major approximations which are made in Lagerstrom's analysis are:

A. Only the fundamental axial harmonic of E z is present within the perturbing rod volume (n =

0)

B. The fields are non-azimuthally varying within the perturbing rod volume (v = 0)

C. The TM portion of the field dominates the TE portion over the perturbation rod volume (H z

= E_ = 0)

D. The perturbed and unperturbed electric fields are equal at the perturbing rod surface (En(b) =

E_(b))

A. Axial space harmonics

In the analysis of [4] the axial electric fields expressed in equation 7 are assumed to

contain only the fundamental axial space harmonic, n = 0, over the perturbing rod volume. The

total longitudinal electric field amplitudes at an azimuthal angle of zero versus axial distance z

(expressed in number of turns) at radial distances of zero, half the perturbation rod radius (b/2)

and the perturbation rod radius (b) are plotted in Figure 6 for different values of axial phase

shift. The wide range of axial phase shifts represents a large frequency range (8.75 - 42.26 GHz)

so that the reader may get a qualitative idea of the space harmonic content as a function of

frequency as well as radius. A Fourier analysis was done on the total longitudinal electric field

along z at the mentioned values of radius and azimuthal angle of zero to give a quantitative
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analysisof theaxialspaceharmoniccontent.Theamplitudesof then = 0, _1 and+_2space

harmonicsareplotted in Figure7 (additionalspaceharmonicswerenot of significant

amplitude). Theseplotsshowthaton theaxis of thecircuit (r = 0), theapproximationis

excellentasthenon-zerospaceharmonicamplitudesareins,gnificantcomparedto the

fundamental.However,at finite valuesof radiustheamplitudeof then -- -1 spaceharmonic

becomesmoresignificant,increasingwith radiusasonewouldexpect. It is alsoseenfrom the

plots thattheamplitudeof then = -1 spaceharmonicbecomesmoresignificantwith increasing

frequency.Theinaccuracyof this approximationin theanalysisis clearlyshownhereasthen =

-1 harmonicis about50%of thefundamentalattheperturbationrod radiusat about42GHz.

Theseresultsimply thattheadditionof then = -1 spaceharmonicto themeasurementanalysis

wouldbesufficientto improveits accuracy.

ILL=30

10-_

N
4 -_-

2 _

r I _ ! I

0 0.2 0.4 0.6 0.8

z (number of turns)

(a)
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Figure 6 Total longitudinal electric field amplitude at 0 = 0 as a function of z for (a) [3L=30

degrees (8.75 GHz) (b) [3L=90 degrees (25.72 GHz) and (c) 13L=150 degrees

(42.26 GHz)
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Figure 7 Magnitude of axial space harmonics of total longitudinal electric field at 0 = 0 for

(a) 13L=30 degrees (8.75 GHz) (b) _L=90 degrees (25.72 GHz) and (c) 13L=150

degrees (42.26 GHz)

B. Azimuthal space harmonics

In the analysis of [4] the axial electric fields expressed in equation 7 are assumed to

contain only the fundamental azimuthal space harmonic, v = 0, over the perturbing rod volume.

The total axial electric field amplitudes versus azimuthal distance 0 (expressed in degrees) at the

perturbation rod radius (b) and z = 0.5L are plotted in Figure 8 for several values of axial phase

shift. From these plots, it is obvious that there is indeed variation in the field with azimuthal

angle. A Fourier analysis was done on the field along 0 at the perturbation rod radius and z =

0.5L to give a quantitative analysis of the azimuthal space harmonic content. The amplitudes of

the v = 0, +1, +2 and +3 space harmonics are plotted in Figure 9 (additional space harmonics

were not of significant amplitude). These plots show that at the perturbation rod radius, the v = -

1 space harmonic amplitude is significant equaling about 50% of the fundamental at 42 GHz.
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The v = 1 space harmonic amplitude begins to emerge at higher frequencies. From inspection of

Figure 7 and Figure 9, it can be seen that the v thspace harmonic magnitudes are about equal to

the r/th space harmonic magnitudes. This verifies the common assumption that v = n because of

the skew symmetry of the helix [13].
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Figure 8 Total axial electric field amplitude as a function of O at z = 0.5L for (a) _L=30

degrees (8.75 GHz) (b) [3L=90 degrees (25.72 GHz) and (c) [3L=150 degrees

(42.26 GHz)
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Figure 9 Magnitude of azimuthal space harmonics of total longitudinal electric field at z =

0.5L for (a) 13L=30 degrees (8.75 GHz) (b) [3L=90 degrees (25.72 GHz) and (c)

_L=150 degrees (42, 26 GHz)

C. TE Fields

The TE portion of the fields is neglected in the integration of the fields over the

perturbation rod volume. Thus, from equation 8 the azimuthal component of the electric field is
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mustbezero. Theazimuthalelectricfield amplitudesnormalizedto themaximumvalueof

longitudinalelectricfield attheperturbationrod radiusand0 = 0 areplottedin Figure 10versus

z. Fromtheplot, it canbeseenthatEo is nontrivial amounting to about 10% of E_x at 13L = 30

degrees and about 30% at 13L = 150 degrees.
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Figure 10 Azimuthal electric field amplitude normalized to the maximum value of

longitudinal electric field as a function of z at the perturbation rod radius and 0

=0

D. Perturbed and unperturbed fields

In the analysis of [4] it is assumed that the perturbed and unperturbed electric fields are

equal outside the perturbing rod (En(b) = E,(b)). From this assumption the correction factor Pl

of equation 13 is derived which relates the on-axis longitudinal electric field before and after

perturbation as E'z(O) = Pl Ez(O). To investigate this approximation, the magnitudes of the

perturbed fields on the axis obtained directly from MAFIA simulations and as a product of the
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correctionfactorp_andthe unperturbed field Ez(0) are compared. The results are plotted in

Figure 11 showing an average difference of 14% across the bandwidth.
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Figure 11 Perturbed on-axis longitudinal electric field amplitude obtained directly from

MAFIA simulation and using Lagerstrom's correction factor pt

VI. CONCLUSIONS

The advent of accurate three-dimensional helical circuit models has made it possible, for

the first time, to investigate standard approximations involved in experimental interaction

impedance calculations. A summary was given of Lagerstrom's analysis which relates change in

axial phase shift or frequency between a perturbed and unperturbed helical circuit to impedance.

The major approximations were emphasized and followed by an investigation of the accuracy of

each assumption using MAFIA. The inaccuracy of the approximations along with the large

discrepancy between measured impedance via perturbation +rod direct calculations using MAFIA

prove that a more accurate value of interaction impedance can be obtained by using three-
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dimensionalcomputationalmethodsratherthanperformingcostlyandtime-consuming

experimentalcold-testmeasurements.This impliesa largesavingsin time andmoneyassociated

with fabricatingandtestingcircuitsor scaledcircuit models,aswell asmoreaccurateresults.

Theseresultsareparticularlymeaningfulat higherfrequencieswhereexperimentalcold-

testingis moretime-consuming,lessaccuratebecauseof necessarilytight tolerancesandmore

difficult to perform. In addition,smallerdimensionsassociatedwith higherfrequenciesimply

largerb/avalueswherethe approximationsin the impedancecalculationsbecomeleastaccurate.

Thisstudyalsogivesananalysisof field behaviorin helical circuitswhichcanbeusedasanaid

in improvingexistinghelicalanalysiscodesby pointing outwhich approximationscause

significanterror.

Theaccuracyof theMAFIA computationalhelicalmodelwasvalidatedfor theMMPM

helicalcircuit by comparingthedispersionobtainedby measurementandby usingMAFIA. The

agreementwasoutstandingwith lessthan0.13%difference. Theinteractionimpedance

measurementsusingperturbationandLagerstrom'sanalysiswereduplicatedusingMAFIA and

comparedto measuredvalueswith negligibledifference.Validationof thecomputationalmodel

hasalso beenperformedfor severalothercircuit geometriesandfrequencyrangesin [1]

providing enough confidence in the simulated results to avoid experimental measurements

altogether.
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